Source: 2017 China South East Mathematical Olympiad Day1 P2
July 30, 2017
functionmodular arithmeticalgebranumber theory
Problem Statement
Let xi∈{0,1}(i=1,2,⋯,n),if the value of function f=f(x1,x2,⋯,xn) can only be 0 or 1,then we call f a n-var Boole function,and we denote Dn(f)={(x1,x2,⋯,xn)∣f(x1,x2,⋯,xn)=0}.(1) Find the number of n-var Boole function;
(2) Let g be a n-var Boole function such that g(x1,x2,⋯,xn)≡1+x1+x1x2+x1x2x3+⋯+x1x2⋯xn(mod2),
Find the number of elements of the set Dn(g),and find the maximum of n∈N+ such that
∑(x1,x2,⋯,xn)∈Dn(g)(x1+x2+⋯+xn)≤2017.