MathDB
Problems
Contests
National and Regional Contests
Germany Contests
Bundeswettbewerb Mathematik
1982 Bundeswettbewerb Mathematik
1982 Bundeswettbewerb Mathematik
Part of
Bundeswettbewerb Mathematik
Subcontests
(4)
2
2
Hide problems
Bundeswettbewerb Mathematik 1982 Problem 1.2
In a convex quadrilateral
A
B
C
D
ABCD
A
BC
D
sides
A
B
AB
A
B
and
D
C
DC
D
C
are both divided into
m
m
m
equal parts by points
A
,
S
1
,
S
2
,
…
,
S
m
−
1
,
B
A, S_1 , S_2 , \ldots , S_{m-1} ,B
A
,
S
1
,
S
2
,
…
,
S
m
−
1
,
B
and
D
,
T
1
,
T
2
,
…
,
T
m
−
1
,
C
,
D,T_1, T_2, \ldots , T_{m-1},C,
D
,
T
1
,
T
2
,
…
,
T
m
−
1
,
C
,
respectively (in this order). Similarly, sides
B
C
BC
BC
and
A
D
AD
A
D
are divided into
n
n
n
equal parts by points
B
,
U
1
,
U
2
,
…
,
U
n
−
1
,
C
B,U_1,U_2, \ldots, U_{n-1},C
B
,
U
1
,
U
2
,
…
,
U
n
−
1
,
C
and
A
,
V
1
,
V
2
,
…
,
V
n
−
1
,
D
A,V_1,V_2, \ldots,V_{n-1}, D
A
,
V
1
,
V
2
,
…
,
V
n
−
1
,
D
. Prove that for
1
≤
i
≤
m
−
1
1 \leq i \leq m-1
1
≤
i
≤
m
−
1
each of the segments
S
i
T
i
S_i T_i
S
i
T
i
is divided by the segments
U
j
V
j
U_j V_j
U
j
V
j
(
1
≤
j
≤
n
−
1
1\leq j \leq n-1
1
≤
j
≤
n
−
1
) into
n
n
n
equal parts
Bundeswettbewerb Mathematik 1981 Problem 2.2
Decide whether every triangle
A
B
C
ABC
A
BC
in space can be orthogonally projected onto a plane such that the projection is an equilateral triangle
A
′
B
′
C
′
A'B'C'
A
′
B
′
C
′
.
1
2
Hide problems
Bundeswettbewerb Mathematik 1982 Problem 1.1
Let
S
S
S
be the sum of the greatest odd divisors of the natural numbers
1
1
1
through
2
n
2^n
2
n
. Prove that
3
S
=
4
n
+
2
3S = 4^n + 2
3
S
=
4
n
+
2
.
Bundeswettbewerb Mathematik 1981 Problem 2.1
Max divided a natural number
p
p
p
by a natural number
q
≤
100
q \leq 100
q
≤
100
. In the decimal representation of the quotient he calculated, the sequence of digits
1982
1982
1982
occurs somewhere after the decimal point. Show that Max made a computational mistake.
3
2
Hide problems
point inside convex polygon
Suppose
P
P
P
is a point inside a convex
2
n
2n
2
n
-gon, such that
P
P
P
does not lie on any diagonal. Show that
P
P
P
lies inside an even number of triangles whose vertices are vertices of the polygon.
Bundeswettbewerb Mathematik 1982 Problem 2.3
Given that
a
1
,
a
2
,
.
.
.
,
a
n
a_1, a_2, . . . , a_n
a
1
,
a
2
,
...
,
a
n
are nonnegative real numbers with
a
1
+
⋯
+
a
n
=
1
a_1 + \cdots + a_n = 1
a
1
+
⋯
+
a
n
=
1
, prove that the expression
a
1
1
+
a
2
+
a
3
+
⋯
+
a
n
+
a
2
1
+
a
1
+
a
3
+
⋯
+
a
n
+
⋯
+
a
n
1
+
a
1
+
a
2
+
⋯
+
a
n
−
1
\frac{a_1}{1+a_2 +a_3 +\cdots +a_n }\; +\; \frac{a_2}{1+a_1 +a_3 +\cdots +a_n }\; +\; \cdots \; +\, \frac{a_n }{1+a_1 +a_2+\cdots +a_{n-1} }
1
+
a
2
+
a
3
+
⋯
+
a
n
a
1
+
1
+
a
1
+
a
3
+
⋯
+
a
n
a
2
+
⋯
+
1
+
a
1
+
a
2
+
⋯
+
a
n
−
1
a
n
attains its minimum, and determine this minimum.
4
1
Hide problems
sum free
We call a set “sum free” if no two elements of the set add up to a third element of the set. What is the maximum size of a sum free subset of
{
1
,
2
,
…
,
2
n
−
1
}
\{ 1, 2, \ldots , 2n - 1 \}
{
1
,
2
,
…
,
2
n
−
1
}
.