MathDB
Bundeswettbewerb Mathematik 1982 Problem 2.3

Source: Bundeswettbewerb Mathematik 1982 Round 2

September 22, 2022
algebrainequalitiesminimum

Problem Statement

Given that a1,a2,...,ana_1, a_2, . . . , a_n are nonnegative real numbers with a1++an=1a_1 + \cdots + a_n = 1, prove that the expression a11+a2+a3++an  +  a21+a1+a3++an  +    +an1+a1+a2++an1 \frac{a_1}{1+a_2 +a_3 +\cdots +a_n }\; +\; \frac{a_2}{1+a_1 +a_3 +\cdots +a_n }\; +\; \cdots \; +\, \frac{a_n }{1+a_1 +a_2+\cdots +a_{n-1} } attains its minimum, and determine this minimum.