MathDB

2017 Bundeswettbewerb Mathematik

Part of Bundeswettbewerb Mathematik

Subcontests

(4)
3
2

Tangential Quadrilateral Defines Another Quadrilateral

Let MM be the incenter of the tangential quadrilateral A1A2A3A4A_1A_2A_3A_4. Let line g1g_1 through A1A_1 be perpendicular to A1MA_1M; define g2,g3g_2,g_3 and g4g_4 similarly. The lines g1,g2,g3g_1,g_2,g_3 and g4g_4 define another quadrilateral B1B2B3B4B_1B_2B_3B_4 having B1B_1 be the intersection of g1g_1 and g2g_2; similarly B2,B3B_2,B_3 and B4B_4 are intersections of g2g_2 and g3g_3, g3g_3 and g4g_4, resp. g4g_4 and g1g_1. Prove that the diagonals of quadrilateral B1B2B3B4B_1B_2B_3B_4 intersect in point MM.
[asy] import graph; size(15cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-9.773972777861085,xmax=12.231603726660566,ymin=-3.9255487671791487,ymax=7.37238601960895; pair M=(2.,2.), A_4=(-1.6391623316400197,1.2875505916864178), A_1=(3.068893183992864,-0.5728665455336459), A_2=(4.30385937824148,2.2922812065339455), A_3=(2.221541124684679,4.978916319940133), B_4=(-0.9482172571022687,-2.24176848577888), B_1=(4.5873184669543345,0.057960746374459436), B_2=(3.9796042717514277,4.848169684238838), B_3=(-2.4295496490492385,5.324816563638236); draw(circle(M,2.),linewidth(0.8)); draw(A_4--A_1,linewidth(0.8)); draw(A_1--A_2,linewidth(0.8)); draw(A_2--A_3,linewidth(0.8)); draw(A_3--A_4,linewidth(0.8)); draw(M--A_3,linewidth(0.8)+dotted); draw(M--A_2,linewidth(0.8)+dotted); draw(M--A_1,linewidth(0.8)+dotted); draw(M--A_4,linewidth(0.8)+dotted); draw((xmin,-0.07436970390935019*xmin+5.144131675605378)--(xmax,-0.07436970390935019*xmax+5.144131675605378),linewidth(0.8)); draw((xmin,-7.882338401302275*xmin+36.2167572574517)--(xmax,-7.882338401302275*xmax+36.2167572574517),linewidth(0.8)); draw((xmin,0.4154483588930812*xmin-1.847833182441644)--(xmax,0.4154483588930812*xmax-1.847833182441644),linewidth(0.8)); draw((xmin,-5.107958950031516*xmin-7.085223310768749)--(xmax,-5.107958950031516*xmax-7.085223310768749),linewidth(0.8)); dot(M,linewidth(3.pt)+ds); label("MM",(2.0593440948136896,2.0872038897020024),NE*lsf); dot(A_4,linewidth(3.pt)+ds); label("A4A_4",(-2.6355449660387147,1.085078446888477),NE*lsf); dot(A_1,linewidth(3.pt)+ds); label("A1A_1",(3.1575637581709772,-1.2486383377457595),NE*lsf); dot(A_2,linewidth(3.pt)+ds); label("A2A_2",(4.502882845783654,2.30684782237346),NE*lsf); dot(A_3,linewidth(3.pt)+ds); label("A3A_3",(2.169166061149418,5.203402184478307),NE*lsf); label("g3g_3",(-9.691606303109287,5.354407388189934),NE*lsf); label("g2g_2",(3.0889250292111465,6.727181967386543),NE*lsf); label("g1g_1",(-4.763345563793459,-3.4725331560442676),NE*lsf); label("g4g_4",(-2.663000457622647,6.878187171098171),NE*lsf); dot(B_4,linewidth(3.pt)+ds); label("B4B_4",(-1.5647807942653595,-3.0332452907013523),NE*lsf); dot(B_1,linewidth(3.pt)+ds); label("B1B_1",(4.955898456918535,-0.6583452686912173),NE*lsf); dot(B_2,linewidth(3.pt)+ds); label("B2B_2",(4.104778217816637,5.0661247265586455),NE*lsf); dot(B_3,linewidth(3.pt)+ds); label("B3B_3",(-3.4454819677647146,5.656417795613188),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]