Tangential Quadrilateral Defines Another Quadrilateral
Source: Bundeswettbewerb Mathematik 2017, Round 1 - #3
August 7, 2017
geometrygeometry unsolvedtangential quadrilateralIntersectionperpendicularGermany
Problem Statement
Let be the incenter of the tangential quadrilateral . Let line through be perpendicular to ; define and similarly. The lines and define another quadrilateral having be the intersection of and ; similarly and are intersections of and , and , resp. and .
Prove that the diagonals of quadrilateral intersect in point .[asy]
import graph; size(15cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-9.773972777861085,xmax=12.231603726660566,ymin=-3.9255487671791487,ymax=7.37238601960895;
pair M=(2.,2.), A_4=(-1.6391623316400197,1.2875505916864178), A_1=(3.068893183992864,-0.5728665455336459), A_2=(4.30385937824148,2.2922812065339455), A_3=(2.221541124684679,4.978916319940133), B_4=(-0.9482172571022687,-2.24176848577888), B_1=(4.5873184669543345,0.057960746374459436), B_2=(3.9796042717514277,4.848169684238838), B_3=(-2.4295496490492385,5.324816563638236);
draw(circle(M,2.),linewidth(0.8)); draw(A_4--A_1,linewidth(0.8)); draw(A_1--A_2,linewidth(0.8)); draw(A_2--A_3,linewidth(0.8)); draw(A_3--A_4,linewidth(0.8)); draw(M--A_3,linewidth(0.8)+dotted); draw(M--A_2,linewidth(0.8)+dotted); draw(M--A_1,linewidth(0.8)+dotted); draw(M--A_4,linewidth(0.8)+dotted); draw((xmin,-0.07436970390935019*xmin+5.144131675605378)--(xmax,-0.07436970390935019*xmax+5.144131675605378),linewidth(0.8)); draw((xmin,-7.882338401302275*xmin+36.2167572574517)--(xmax,-7.882338401302275*xmax+36.2167572574517),linewidth(0.8)); draw((xmin,0.4154483588930812*xmin-1.847833182441644)--(xmax,0.4154483588930812*xmax-1.847833182441644),linewidth(0.8)); draw((xmin,-5.107958950031516*xmin-7.085223310768749)--(xmax,-5.107958950031516*xmax-7.085223310768749),linewidth(0.8));
dot(M,linewidth(3.pt)+ds); label("",(2.0593440948136896,2.0872038897020024),NE*lsf); dot(A_4,linewidth(3.pt)+ds); label("",(-2.6355449660387147,1.085078446888477),NE*lsf); dot(A_1,linewidth(3.pt)+ds); label("",(3.1575637581709772,-1.2486383377457595),NE*lsf); dot(A_2,linewidth(3.pt)+ds); label("",(4.502882845783654,2.30684782237346),NE*lsf); dot(A_3,linewidth(3.pt)+ds); label("",(2.169166061149418,5.203402184478307),NE*lsf); label("",(-9.691606303109287,5.354407388189934),NE*lsf); label("",(3.0889250292111465,6.727181967386543),NE*lsf); label("",(-4.763345563793459,-3.4725331560442676),NE*lsf); label("",(-2.663000457622647,6.878187171098171),NE*lsf); dot(B_4,linewidth(3.pt)+ds); label("",(-1.5647807942653595,-3.0332452907013523),NE*lsf); dot(B_1,linewidth(3.pt)+ds); label("",(4.955898456918535,-0.6583452686912173),NE*lsf); dot(B_2,linewidth(3.pt)+ds); label("",(4.104778217816637,5.0661247265586455),NE*lsf); dot(B_3,linewidth(3.pt)+ds); label("",(-3.4454819677647146,5.656417795613188),NE*lsf);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]