MathDB
Problems
Contests
National and Regional Contests
Germany Contests
German National Olympiad
2006 German National Olympiad
5
5
Part of
2006 German National Olympiad
Problems
(1)
Not so standard inequality involving absolute values, roots
Source: Germany 2006 Grade 11-13 - #5
6/5/2015
Let
x
≠
0
x \neq 0
x
=
0
be a real number satisfying
a
x
2
+
b
x
+
c
=
0
ax^2+bx+c=0
a
x
2
+
b
x
+
c
=
0
with
a
,
b
,
c
∈
Z
a,b,c \in \mathbb{Z}
a
,
b
,
c
∈
Z
obeying
∣
a
∣
+
∣
b
∣
+
∣
c
∣
>
1
|a|+|b|+|c| > 1
∣
a
∣
+
∣
b
∣
+
∣
c
∣
>
1
. Then prove
∣
x
∣
≥
1
∣
a
∣
+
∣
b
∣
+
∣
c
∣
−
1
.
|x| \geq \frac{1}{|a|+|b|+|c|-1}.
∣
x
∣
≥
∣
a
∣
+
∣
b
∣
+
∣
c
∣
−
1
1
.
inequalities
absolute value
polynomial
Root