In the following, the abbreviation g∩h will mean the point of intersection of two lines g and h.
Let ABCDE be a convex pentagon. Let A′=BD∩CE, B′=CE∩DA, C′=DA∩EB, D′=EB∩AC and E′=AC∩BD. Furthermore, let A′′=AA′∩EB, B′′=BB′∩AC, C′′=CC′∩BD, D′′=DD′∩CE and E′′=EE′∩DA.
Prove that:
A′′BEA′′⋅B′′CAB′′⋅C′′DBC′′⋅D′′ECD′′⋅E′′ADE′′=1.
Darij trigonometrygeometry proposedgeometry