MathDB
The pentagram revisited

Source: problem 14 (G4) of QEDMO 1; created by myself

November 7, 2005
trigonometrygeometry proposedgeometry

Problem Statement

In the following, the abbreviation ghg \cap h will mean the point of intersection of two lines gg and hh. Let ABCDEABCDE be a convex pentagon. Let A=BDCEA^{\prime}=BD\cap CE, B=CEDAB^{\prime}=CE\cap DA, C=DAEBC^{\prime}=DA\cap EB, D=EBACD^{\prime}=EB\cap AC and E=ACBDE^{\prime}=AC\cap BD. Furthermore, let A=AAEBA^{\prime\prime}=AA^{\prime}\cap EB, B=BBACB^{\prime\prime}=BB^{\prime}\cap AC, C=CCBDC^{\prime\prime}=CC^{\prime}\cap BD, D=DDCED^{\prime\prime}=DD^{\prime}\cap CE and E=EEDAE^{\prime\prime}=EE^{\prime}\cap DA. Prove that: EAABABBCBCCDCDDEDEEA=1. \frac{EA^{\prime\prime}}{A^{\prime\prime}B}\cdot\frac{AB^{\prime\prime}}{B^{\prime\prime}C}\cdot\frac{BC^{\prime\prime}}{C^{\prime\prime}D}\cdot\frac{CD^{\prime\prime}}{D^{\prime\prime}E}\cdot\frac{DE^{\prime\prime}}{E^{\prime\prime}A}=1. Darij