MathDB
Problems
Contests
National and Regional Contests
Hungary Contests
Eotvos Mathematical Competition (Hungary)
1897 Eotvos Mathematical Competition
1
1
Part of
1897 Eotvos Mathematical Competition
Problems
(1)
Prove, for angles $\alpha$, $\beta$ and $\gamma$ of a right triangle, the follow
Source: Eotvos 1897 p1
3/14/2020
Prove, for angles
α
\alpha
α
,
β
\beta
β
and
γ
\gamma
γ
of a right triangle, the following relation:
sin
α
sin
β
sin
(
α
−
β
)
+
sin
β
sin
γ
sin
(
β
−
γ
)
+
sin
γ
sin
α
sin
(
γ
−
α
)
+
sin
(
α
−
β
)
sin
(
β
−
γ
)
sin
(
γ
−
α
)
=
0.
\text{sin } \alpha \text{ sin } \beta \text{ sin } (\alpha-\beta) \text{ } + \text{ sin } \beta \text{ sin } \gamma \text{ sin } (\beta-\gamma) \text{ }+ \text{ sin } \gamma \text{ sin } \alpha \text{ sin } (\gamma-\alpha) \text{ }+ \text{ sin } (\alpha-\beta) \text{ sin } (\beta-\gamma) \text{ sin } (\gamma-\alpha) = 0.
sin
α
sin
β
sin
(
α
−
β
)
+
sin
β
sin
γ
sin
(
β
−
γ
)
+
sin
γ
sin
α
sin
(
γ
−
α
)
+
sin
(
α
−
β
)
sin
(
β
−
γ
)
sin
(
γ
−
α
)
=
0.
geometry