MathDB
Prove, for angles $\alpha$, $\beta$ and $\gamma$ of a right triangle, the follow

Source: Eotvos 1897 p1

March 14, 2020
geometry

Problem Statement

Prove, for angles α\alpha, β\beta and γ\gamma of a right triangle, the following relation: sin α sin β sin (αβ) + sin β sin γ sin (βγ) + sin γ sin α sin (γα) + sin (αβ) sin (βγ) sin (γα)=0.\text{sin } \alpha \text{ sin } \beta \text{ sin } (\alpha-\beta) \text{ } + \text{ sin } \beta \text{ sin } \gamma \text{ sin } (\beta-\gamma) \text{ }+ \text{ sin } \gamma \text{ sin } \alpha \text{ sin } (\gamma-\alpha) \text{ }+ \text{ sin } (\alpha-\beta) \text{ sin } (\beta-\gamma) \text{ sin } (\gamma-\alpha) = 0.