MathDB
Problems
Contests
National and Regional Contests
India Contests
Chennai Mathematical Institute B.Sc. Entrance Exam
2023 CMI B.Sc. Entrance Exam
5
5
Part of
2023 CMI B.Sc. Entrance Exam
Problems
(1)
Results on composition of functions
Source: CMI 2023 B5
5/9/2023
In whatever follows
f
f
f
denotes a differentiable function from
R
\mathbb{R}
R
to
R
\mathbb{R}
R
.
f
∘
f
f \circ f
f
∘
f
denotes the composition of
f
(
x
)
f(x)
f
(
x
)
.
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
a
)
<
/
s
p
a
n
>
<span class='latex-bold'>(a)</span>
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
a
)
<
/
s
p
an
>
If
f
∘
f
(
x
)
=
f
(
x
)
∀
x
∈
R
f\circ f(x) = f(x) \forall x \in \mathbb{R}
f
∘
f
(
x
)
=
f
(
x
)
∀
x
∈
R
then for all
x
x
x
,
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
or
f
′
(
f
(
x
)
)
=
f'(f(x)) =
f
′
(
f
(
x
))
=
. Fill in the blank and justify.
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
b
)
<
/
s
p
a
n
>
<span class='latex-bold'>(b)</span>
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
b
)
<
/
s
p
an
>
Assume that the range of
f
f
f
is of the form
(
−
∞
,
+
∞
)
,
[
a
,
∞
)
,
(
−
∞
,
b
]
,
[
a
,
b
]
\left(-\infty , +\infty \right), [a, \infty ),(- \infty , b], [a, b]
(
−
∞
,
+
∞
)
,
[
a
,
∞
)
,
(
−
∞
,
b
]
,
[
a
,
b
]
. Show that if
f
∘
f
=
f
f \circ f = f
f
∘
f
=
f
, then the range of
f
f
f
is
R
\mathbb{R}
R
. (Hint: Consider a maximal element in the range of f)
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
c
)
<
/
s
p
a
n
>
<span class='latex-bold'>(c)</span>
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
c
)
<
/
s
p
an
>
If
g
g
g
satisfies
g
∘
g
∘
g
=
g
g \circ g \circ g = g
g
∘
g
∘
g
=
g
, then
g
g
g
is onto. Prove that
g
g
g
is either strictly increasing or strictly decreasing. Furthermore show that if
g
g
g
is strictly increasing, then
g
g
g
is unique.
function
real analysis
CMI