MathDB
Results on composition of functions

Source: CMI 2023 B5

May 9, 2023
functionreal analysisCMI

Problem Statement

In whatever follows ff denotes a differentiable function from R\mathbb{R} to R\mathbb{R}. fff \circ f denotes the composition of f(x)f(x). <spanclass=latexbold>(a)</span><span class='latex-bold'>(a)</span> If ff(x)=f(x)xRf\circ f(x) = f(x) \forall x \in \mathbb{R} then for all xx, f(x)=f'(x) = or f(f(x))=f'(f(x)) =. Fill in the blank and justify. <spanclass=latexbold>(b)</span><span class='latex-bold'>(b)</span>Assume that the range of ff is of the form (,+),[a,),(,b],[a,b] \left(-\infty , +\infty \right), [a, \infty ),(- \infty , b], [a, b] . Show that if ff=ff \circ f = f, then the range of ff is R\mathbb{R}. (Hint: Consider a maximal element in the range of f) <spanclass=latexbold>(c)</span><span class='latex-bold'>(c)</span> If gg satisfies ggg=gg \circ g \circ g = g, then gg is onto. Prove that gg is either strictly increasing or strictly decreasing. Furthermore show that if gg is strictly increasing, then gg is unique.