We call a path Valid if
i. It only comprises of the following kind of steps:
A. (x,y)→(x+1,y+1)
B. (x,y)→(x+1,y−1)
ii. It never goes below the x-axis.
Let M(n) = set of all valid paths from (0,0), to (2n,0), where n is a natural number.
Consider a Valid path T∈M(n).
Denote ϕ(T)=∏i=12nμi,
where μi=
a) 1, if the ith step is (x,y)→(x+1,y+1)
b) y, if the ith step is (x,y)→(x+1,y−1)
Now Let f(n)=∑T∈M(n)ϕ(T). Evaluate the number of zeroes at the end in the decimal expansion of f(2021) geometrygeometric transformationrotation