MathDB
Valid paths and a whole lot of scary notation

Source: STEMS 2022 cat a P3

December 19, 2021
geometrygeometric transformationrotation

Problem Statement

We call a path Valid if i. It only comprises of the following kind of steps: A. (x,y)(x+1,y+1)(x, y) \rightarrow (x + 1, y + 1) B. (x,y)(x+1,y1)(x, y) \rightarrow (x + 1, y - 1) ii. It never goes below the x-axis. Let M(n)M(n) = set of all valid paths from (0,0)(0,0) , to (2n,0)(2n,0), where nn is a natural number. Consider a Valid path TM(n)T \in M(n). Denote ϕ(T)=i=12nμi\phi(T) = \prod_{i=1}^{2n} \mu_i, where μi\mu_i= a) 11, if the ithi^{th} step is (x,y)(x+1,y+1)(x, y) \rightarrow (x + 1, y + 1) b) yy, if the ithi^{th} step is (x,y)(x+1,y1)(x, y) \rightarrow (x + 1, y - 1) Now Let f(n)=TM(n)ϕ(T)f(n) =\sum _{T \in M(n)} \phi(T). Evaluate the number of zeroes at the end in the decimal expansion of f(2021)f(2021)