MathDB
Problems
Contests
National and Regional Contests
India Contests
ISI Entrance Examination
2019 ISI Entrance Examination
4
4
Part of
2019 ISI Entrance Examination
Problems
(1)
ISI 2019 : Problem #4
Source: I.S.I. 2019
5/5/2019
Let
f
:
R
→
R
f:\mathbb{R}\to\mathbb{R}
f
:
R
→
R
be a twice differentiable function such that
1
2
y
∫
x
−
y
x
+
y
f
(
t
)
d
t
=
f
(
x
)
∀
x
∈
R
&
y
>
0
\frac{1}{2y}\int_{x-y}^{x+y}f(t)\, dt=f(x)\qquad\forall~x\in\mathbb{R}~\&~y>0
2
y
1
∫
x
−
y
x
+
y
f
(
t
)
d
t
=
f
(
x
)
∀
x
∈
R
&
y
>
0
Show that there exist
a
,
b
∈
R
a,b\in\mathbb{R}
a
,
b
∈
R
such that
f
(
x
)
=
a
x
+
b
f(x)=ax+b
f
(
x
)
=
a
x
+
b
for all
x
∈
R
x\in\mathbb{R}
x
∈
R
.
isi
Indian Statistical Institute
2019
calculus