MathDB
ISI 2019 : Problem #4

Source: I.S.I. 2019

May 5, 2019
isiIndian Statistical Institute2019calculus

Problem Statement

Let f:RRf:\mathbb{R}\to\mathbb{R} be a twice differentiable function such that 12yxyx+yf(t)dt=f(x) xR & y>0\frac{1}{2y}\int_{x-y}^{x+y}f(t)\, dt=f(x)\qquad\forall~x\in\mathbb{R}~\&~y>0 Show that there exist a,bRa,b\in\mathbb{R} such that f(x)=ax+bf(x)=ax+b for all xRx\in\mathbb{R}.