2
Part of 2009 Indonesia MO
Problems(2)
The minimum value of a function
Source: Indonesian MO (INAMO) 2009, Day 2, Problem 6
8/8/2009
Find the lowest possible values from the function
f(x) \equal{} x^{2008} \minus{} 2x^{2007} \plus{} 3x^{2006} \minus{} 4x^{2005} \plus{} 5x^{2004} \minus{} \cdots \minus{} 2006x^3 \plus{} 2007x^2 \minus{} 2008x \plus{} 2009
for any real numbers .
functioninequalities unsolvedinequalities
Inequalities in floor function
Source: Indonesian MO (INAMO) 2009, Day 1, Problem 2
8/8/2009
For any real , let be the largest integer that is not more than . Given a sequence of positive integers such that and
\left\lfloor\frac{a_1\plus{}1}{a_2}\right\rfloor\equal{}\left\lfloor\frac{a_2\plus{}1}{a_3}\right\rfloor\equal{}\left\lfloor\frac{a_3\plus{}1}{a_4}\right\rfloor\equal{}\cdots
Prove that
\left\lfloor\frac{a_n\plus{}1}{a_{n\plus{}1}}\right\rfloor\leq1
holds for every positive integer .
inequalitiesfunctionfloor functionnumber theory unsolvednumber theory