Inequalities in floor function
Source: Indonesian MO (INAMO) 2009, Day 1, Problem 2
August 8, 2009
inequalitiesfunctionfloor functionnumber theory unsolvednumber theory
Problem Statement
For any real , let be the largest integer that is not more than . Given a sequence of positive integers such that and
\left\lfloor\frac{a_1\plus{}1}{a_2}\right\rfloor\equal{}\left\lfloor\frac{a_2\plus{}1}{a_3}\right\rfloor\equal{}\left\lfloor\frac{a_3\plus{}1}{a_4}\right\rfloor\equal{}\cdots
Prove that
\left\lfloor\frac{a_n\plus{}1}{a_{n\plus{}1}}\right\rfloor\leq1
holds for every positive integer .