MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2012 Today's Calculation Of Integral
841
841
Part of
2012 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 841
Source: 2012 Kobe University entrance exam・Science
8/2/2012
Find
∫
0
x
d
t
1
+
t
2
+
∫
0
1
x
d
t
1
+
t
2
(
x
>
0
)
.
\int_0^x \frac{dt}{1+t^2}+\int_0^{\frac{1}{x}} \frac{dt}{1+t^2}\ (x>0).
∫
0
x
1
+
t
2
d
t
+
∫
0
x
1
1
+
t
2
d
t
(
x
>
0
)
.
calculus
integration
function
trigonometry
calculus computations