MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2012 Today's Calculation Of Integral
841
Today's calculation of Integral 841
Today's calculation of Integral 841
Source: 2012 Kobe University entrance exam・Science
August 2, 2012
calculus
integration
function
trigonometry
calculus computations
Problem Statement
Find
∫
0
x
d
t
1
+
t
2
+
∫
0
1
x
d
t
1
+
t
2
(
x
>
0
)
.
\int_0^x \frac{dt}{1+t^2}+\int_0^{\frac{1}{x}} \frac{dt}{1+t^2}\ (x>0).
∫
0
x
1
+
t
2
d
t
+
∫
0
x
1
1
+
t
2
d
t
(
x
>
0
)
.
Back to Problems
View on AoPS