MathDB
Problems
Contests
National and Regional Contests
Malaysia Contests
JOM Shortlists
JOM 2015 Shortlist
A7
A7
Part of
JOM 2015 Shortlist
Problems
(1)
$\frac{a^3 + bc}{a^2 + bc}$
Source: Junior Olympiad of Malaysia Shortlist 2015 A7
7/17/2015
Given positive reals
a
,
b
,
c
a, b, c
a
,
b
,
c
that satisfy
a
+
b
+
c
=
1
a + b + c = 1
a
+
b
+
c
=
1
, show that
∑
c
y
c
a
3
+
b
c
a
2
+
b
c
≥
2
\displaystyle \sum^{}_{cyc}\frac{a^3+bc}{a^2+bc}\ge 2
cyc
∑
a
2
+
b
c
a
3
+
b
c
≥
2
Inequality
inequalities