MathDB
$\frac{a^3 + bc}{a^2 + bc}$

Source: Junior Olympiad of Malaysia Shortlist 2015 A7

July 17, 2015
Inequalityinequalities

Problem Statement

Given positive reals a,b,c a, b, c that satisfy a+b+c=1 a + b + c = 1 , show that cyca3+bca2+bc2 \displaystyle \sum^{}_{cyc}\frac{a^3+bc}{a^2+bc}\ge 2