MathDB
Problems
Contests
National and Regional Contests
Mathlinks Contests.
MathLinks Contest 7th
3.1
3.1
Part of
MathLinks Contest 7th
Problems
(1)
0731
Source:
5/12/2008
Let
p
p
p
be a prime and let
d
∈
{
0
,
1
,
…
,
p
}
d \in \left\{0,\ 1,\ \ldots,\ p\right\}
d
∈
{
0
,
1
,
…
,
p
}
. Prove that \sum_{k \equal{} 0}^{p \minus{} 1}{\binom{2k}{k \plus{} d}}\equiv r \pmod{p}, where r \equiv p\minus{}d \pmod 3, r\in\{\minus{}1,0,1\}.
modular arithmetic
algebra
polynomial