0731
Source:
May 12, 2008
modular arithmeticalgebrapolynomial
Problem Statement
Let be a prime and let . Prove that
\sum_{k \equal{} 0}^{p \minus{} 1}{\binom{2k}{k \plus{} d}}\equiv r \pmod{p},
where r \equiv p\minus{}d \pmod 3, r\in\{\minus{}1,0,1\}.