MathDB

2023 Mexican Girls' Contest

Part of Mexican Girls' Contest

Subcontests

(8)
8
1

hexagons with the same area

There are 33 sticks of each color between blue, red and green, such that we can make a triangle TT with sides sticks with all different colors. Dana makes 22 two arrangements, she starts with TT and uses the other six sticks to extend the sides of TT, as shown in the figure. This leads to two hexagons with vertex the ends of these six sticks. Prove that the area of the both hexagons it´s the same.
[asy]size(300); pair A, B, C, D, M, N, P, Q, R, S, T, U, V, W, X, Y, Z, K;
A = (0, 0); B = (1, 0); C=(-0.5,2); D=(-1.1063,4.4254); M=(-1.7369,3.6492); N=(3.5,0); P=(-2.0616,0); Q=(0.2425,-0.9701); R=(1.6,-0.8); S=(7.5164,0.8552); T=(8.5064,0.8552); U=(7.0214,2.8352); V=(8.1167,-1.546); W=(9.731,-0.7776); X=(10.5474,0.8552); Y=(6.7813,3.7956); Z=(6.4274,3.6272); K=(5.0414,0.8552);
draw(A--B, blue); label("bb", (A + B) / 2, dir(270), fontsize(10)); label("gg", (B+C) / 2, dir(10), fontsize(10)); label("rr", (A+C) / 2, dir(230), fontsize(10)); draw(B--C,green); draw(D--C,green); label("gg", (C + D) / 2, dir(10), fontsize(10)); draw(C--A,red); label("rr", (C + M) / 2, dir(200), fontsize(10)); draw(B--N,green); label("gg", (B + N) / 2, dir(70), fontsize(10)); draw(A--P,red); label("rr", (A+P) / 2, dir(70), fontsize(10)); draw(A--Q,blue); label("bb", (A+Q) / 2, dir(540), fontsize(10)); draw(B--R,blue); draw(C--M,red); label("bb", (B+R) / 2, dir(600), fontsize(10)); draw(Q--R--N--D--M--P--Q, dashed); draw(Y--Z--K--V--W--X--Y, dashed); draw(S--T,blue); draw(U--T,green); draw(U--S,red); draw(T--W,red); draw(T--X,red); draw(S--K,green); draw(S--V,green); draw(Y--U,blue); draw(U--Z,blue);
label("bb", (Y+U) / 2, dir(0), fontsize(10)); label("bb", (U+Z) / 2, dir(200), fontsize(10)); label("bb", (S+T) / 2, dir(100), fontsize(10)); label("rr", (S+U) / 2, dir(200), fontsize(10)); label("rr", (T+W) / 2, dir(70), fontsize(10)); label("rr", (T+X) / 2, dir(70), fontsize(10)); label("gg", (U+T) / 2, dir(70), fontsize(10)); label("gg", (S+K) / 2, dir(70), fontsize(10)); label("gg", (V+S) / 2, dir(30), fontsize(10));
[/asy]
2
2

the number of paths is odd

In the city of Las Cobayas\textrm{Las Cobayas}, the houses are arranged in a rectangular grid of 33 rows and n2n\geq 2 columns, as illustrated in the figure. Mich\textrm{Mich} plans to move there and wants to tour the city to visit some of the houses in a way that he visits at least one house from each column and does not visit the same house more than once. During his tour, Mich\textrm{Mich} can move between adjacent houses, that is, after visiting a house, he can continue his journey by visiting one of the neighboring houses to the north, south, east, or west, which are at most four. The figure illustrates one Mich´s\textrm{Mich´s} position (circle), and the houses to which he can move (triangles). Let f(n)f(n) be the number of ways Mich\textrm{Mich} can complete his tour starting from a house in the first column and ending at a house in the last column. Prove that f(n)f(n) is odd. [asy]size(200);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); draw((2,0)--(3,0)--(3,1)--(2,1)--cycle); draw((4,0)--(5,0)--(5,1)--(4,1)--cycle);
draw((0,2)--(1,2)--(1,3)--(0,3)--cycle); draw((2,2)--(3,2)--(3,3)--(2,3)--cycle); draw((4,2)--(5,2)--(5,3)--(4,3)--cycle);
draw((0,4)--(1,4)--(1,5)--(0,5)--cycle); draw((2,4)--(3,4)--(3,5)--(2,5)--cycle); draw((4,4)--(5,4)--(5,5)--(4,5)--cycle); fill(circle((0.5,2.5), 0.4), black); fill((0.1262,4.15)--(0.8738,4.15)--(0.5,4.7974)--cycle, black); fill((0.1262,0.15)--(0.8738,0.15)--(0.5,0.7974)--cycle, black); fill((2.1262,2.15)--(2.8738,2.15)--(2.5,2.7974)--cycle, black);
fill(circle((6,0.5), 0.07), black); fill(circle((6.3,0.5), 0.07), black); fill(circle((6.6,0.5), 0.07), black);
fill(circle((6,2.5), 0.07), black); fill(circle((6.3,2.5), 0.07), black); fill(circle((6.6,2.5), 0.07), black);
fill(circle((6,4.5), 0.07), black); fill(circle((6.3,4.5), 0.07), black); fill(circle((6.6,4.5), 0.07), black);
draw((8,0)--(9,0)--(9,1)--(8,1)--cycle); draw((10,0)--(11,0)--(11,1)--(10,1)--cycle);
draw((8,2)--(9,2)--(9,3)--(8,3)--cycle); draw((10,2)--(11,2)--(11,3)--(10,3)--cycle);
draw((8,4)--(9,4)--(9,5)--(8,5)--cycle); draw((10,4)--(11,4)--(11,5)--(10,5)--cycle);
draw((0,-0.2)--(0,-0.5)--(5.5,-0.5)--(5.5,-0.8)--(5.5,-0.5)--(11,-0.5)--(11,-0.5)--(11,-0.2)); label("nn", (5.22,-1.15), dir(0), fontsize(10)); label("West\textrm{West}", (-2,2.5), dir(0), fontsize(10)); label("East\textrm{East}", (11.1,2.5), dir(0), fontsize(10)); label("North\textrm{North}", (4.5,5.7), dir(0), fontsize(10)); label("South\textrm{South}", (4.5,-2), dir(0), fontsize(10)); draw((0.5,2.5)--(2,2.5)--(1.8,2.7)--(2,2.5)--(1.8,2.3)); draw((0.5,2.5)--(0.5,4)--(0.3,3.7)--(0.5,4)--(0.7,3.7)); draw((0.5,2.5)--(0.5,1)--(0.3,1.3)--(0.5,1)--(0.7,1.3)); [/asy]