MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
2020 Poland - Second Round
6.
6.
Part of
2020 Poland - Second Round
Problems
(1)
Amazing Algebra Problem
Source: Poland - Second Round 2020 P6
2/8/2020
Let
(
a
0
,
a
1
,
a
2
,
.
.
.
)
(a_0,a_1,a_2,...)
(
a
0
,
a
1
,
a
2
,
...
)
and
(
b
0
,
b
1
,
b
2
,
.
.
.
)
(b_0,b_1,b_2,...)
(
b
0
,
b
1
,
b
2
,
...
)
be such sequences of non-negative real numbers, that for every integer
i
⩾
1
i\geqslant 1
i
⩾
1
holds
a
i
2
⩽
a
i
−
1
a
i
+
1
a_i^2\leqslant a_{i-1}a_{i+1}
a
i
2
⩽
a
i
−
1
a
i
+
1
and
b
i
2
⩽
b
i
−
1
b
i
+
1
b_i^2\leqslant b_{i-1}b_{i+1}
b
i
2
⩽
b
i
−
1
b
i
+
1
. Define sequence
c
0
,
c
1
,
c
2
,
.
.
.
c_0,c_1,c_2,...
c
0
,
c
1
,
c
2
,
...
as
c
0
=
a
0
b
0
,
c
n
=
∑
i
=
0
n
(
n
i
)
a
i
b
n
−
i
.
c_0=a_0b_0, \; c_n=\sum_{i=0}^{n} {{n}\choose{i}} a_ib_{n-i}.
c
0
=
a
0
b
0
,
c
n
=
i
=
0
∑
n
(
i
n
)
a
i
b
n
−
i
.
Prove that for every integer
k
⩾
1
k\geqslant 1
k
⩾
1
holds
c
k
2
⩽
c
k
−
1
c
k
+
1
c_{k}^2\leqslant c_{k-1}c_{k+1}
c
k
2
⩽
c
k
−
1
c
k
+
1
.
algebra