MathDB
Amazing Algebra Problem

Source: Poland - Second Round 2020 P6

February 8, 2020
algebra

Problem Statement

Let (a0,a1,a2,...)(a_0,a_1,a_2,...) and (b0,b1,b2,...)(b_0,b_1,b_2,...) be such sequences of non-negative real numbers, that for every integer i1i\geqslant 1 holds ai2ai1ai+1a_i^2\leqslant a_{i-1}a_{i+1} and bi2bi1bi+1b_i^2\leqslant b_{i-1}b_{i+1}. Define sequence c0,c1,c2,...c_0,c_1,c_2,... as c0=a0b0,  cn=i=0n(ni)aibni.c_0=a_0b_0, \; c_n=\sum_{i=0}^{n} {{n}\choose{i}} a_ib_{n-i}. Prove that for every integer k1k\geqslant 1 holds ck2ck1ck+1c_{k}^2\leqslant c_{k-1}c_{k+1}.