6.1. Three workers can do some work. Second and the third can together complete it twice as fast as the first, the first and the third can together complete it three times faster than the second. At what time since the first and second can do this job faster than the third?
6.2. Prove that the greatest common divisor of the sum of two numbers and their least common multiple is equal to their greatest common divisor the numbers themselves.
6.3. There were 20 schoolchildren at the consultation and 20 problems were dealt with. It turned out that each student solved two problems and each problem was solved by two schoolchildren. Prove that it is possible to organize the analysis in this way tasks so that everyone solves one problem and all tasks are solved.
[hide=original wording] Наконсультациибыло20школьниковиразбиралось20задач. Оказалось, что каждый школьник решил две задачи и каждую задачу решило два школьника. Докажите, что можно так организовать разбор задач, чтобыкаждыйрассказалоднузадачуивсезадачибылирассказаны.
6.4.Two people Α and Β must get from point Μ to point Ν,located 15 km from M. On foot they can move at a speed of 6 km/h. In addition, they have a bicycle at their disposal, on which υou can drive at a speed of 15 km/h. A and B depart from Μ at the same time, A walks, and B rides a bicycle until meeting pedestrian C, going from N to M. Then B walks and C rides a bicycle to meeting with A, hands him a bicycle, on which he arrives at N. When must pedestrian C leave Nfor A and B to arrive at N simultaneously if he walks at the same speed as A and B?
6.5./ 7.1 Prove that out of any six people there will always be three pairs of acquaintances or three pairs of strangers.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983442_1961_leningrad_math_olympiad]here.