MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Sharygin Geometry Olympiad
2022 Sharygin Geometry Olympiad
14
14
Part of
2022 Sharygin Geometry Olympiad
Problems
(1)
12 altitudes madness
Source: Sharygin 2022 P14
3/4/2022
A triangle
A
B
C
ABC
A
BC
is given. Let
C
′
C'
C
′
and
C
a
′
C'_{a}
C
a
′
be the touching points of sideline
A
B
AB
A
B
with the incircle and with the excircle touching the side
B
C
BC
BC
. Points
C
b
′
C'_{b}
C
b
′
,
C
c
′
C'_{c}
C
c
′
,
A
′
A'
A
′
,
A
a
′
A'_{a}
A
a
′
,
A
b
′
A'_{b}
A
b
′
,
A
c
′
A'_{c}
A
c
′
,
B
′
B'
B
′
,
B
a
′
B'_{a}
B
a
′
,
B
b
′
B'_{b}
B
b
′
,
B
c
′
B'_{c}
B
c
′
are defined similarly. Consider the lengths of
12
12
12
altitudes of triangles
A
′
B
′
C
′
A'B'C'
A
′
B
′
C
′
,
A
a
′
B
a
′
C
a
′
A'_{a}B'_{a}C'_{a}
A
a
′
B
a
′
C
a
′
,
A
b
′
B
b
′
C
b
′
A'_{b}B'_{b}C'_{b}
A
b
′
B
b
′
C
b
′
,
A
c
′
B
c
′
C
c
′
A'_{c}B'_{c}C'_{c}
A
c
′
B
c
′
C
c
′
. (a) (8-9) Find the maximal number of different lengths. (b) (10-11) Find all possible numbers of different lengths.
geometry