MathDB
Problems
Contests
National and Regional Contests
South Africa Contests
South Africa National Olympiad
2009 South africa National Olympiad
4
4
Part of
2009 South africa National Olympiad
Problems
(1)
Inequality between product, sum and sum of reciprocals
Source: South African MO 2009 Q4
5/26/2012
Let
x
1
,
x
2
,
…
,
x
n
x_1,x_2,\dots,x_n
x
1
,
x
2
,
…
,
x
n
be a finite sequence of real numbersm mwhere
0
<
x
i
<
1
0<x_i<1
0
<
x
i
<
1
for all
i
=
1
,
2
,
…
,
n
i=1,2,\dots,n
i
=
1
,
2
,
…
,
n
. Put
P
=
x
1
x
2
⋯
x
n
P=x_1x_2\cdots x_n
P
=
x
1
x
2
⋯
x
n
,
S
=
x
1
+
x
2
+
⋯
+
x
n
S=x_1+x_2+\cdots+x_n
S
=
x
1
+
x
2
+
⋯
+
x
n
and
T
=
1
x
1
+
1
x
2
+
⋯
+
1
x
n
T=\frac{1}{x_1}+\frac{1}{x_2}+\cdots+\frac{1}{x_n}
T
=
x
1
1
+
x
2
1
+
⋯
+
x
n
1
. Prove that
T
−
S
1
−
P
>
2.
\frac{T-S}{1-P}>2.
1
−
P
T
−
S
>
2.
inequalities
inequalities unsolved