MathDB
Inequality between product, sum and sum of reciprocals

Source: South African MO 2009 Q4

May 26, 2012
inequalitiesinequalities unsolved

Problem Statement

Let x1,x2,,xnx_1,x_2,\dots,x_n be a finite sequence of real numbersm mwhere 0<xi<10<x_i<1 for all i=1,2,,ni=1,2,\dots,n. Put P=x1x2xnP=x_1x_2\cdots x_n, S=x1+x2++xnS=x_1+x_2+\cdots+x_n and T=1x1+1x2++1xnT=\frac{1}{x_1}+\frac{1}{x_2}+\cdots+\frac{1}{x_n}. Prove that TS1P>2.\frac{T-S}{1-P}>2.