MathDB
Problems
Contests
National and Regional Contests
Switzerland Contests
Switzerland - Final Round
2010 Switzerland - Final Round
4
4
Part of
2010 Switzerland - Final Round
Problems
(1)
Cyclic inequality in x,y,z
Source: Swiss Math Olympiad 2010 - final round, problem 4
3/16/2010
Let
x
x
x
,
y
y
y
,
z
ā
R
+
z \in\mathbb{R}^+
z
ā
R
+
satisfying
x
y
z
=
1
xyz = 1
x
yz
=
1
. Prove that \frac {(x + y - 1)^2}{z} + \frac {(y + z - 1)^2}{x} + \frac {(z + x - 1)^2}{y}\geqslant x + y + z\mbox{.}
inequalities
algebra
function
triangle inequality
three variable inequality