MathDB
Cyclic inequality in x,y,z

Source: Swiss Math Olympiad 2010 - final round, problem 4

March 16, 2010
inequalitiesalgebrafunctiontriangle inequalitythree variable inequality

Problem Statement

Let x x, y y, z∈R+ z \in\mathbb{R}^+ satisfying xyz=1 xyz = 1. Prove that \frac {(x + y - 1)^2}{z} + \frac {(y + z - 1)^2}{x} + \frac {(z + x - 1)^2}{y}\geqslant x + y + z\mbox{.}