MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
Taiwan National Olympiad
1995 Taiwan National Olympiad
1
1
Part of
1995 Taiwan National Olympiad
Problems
(1)
$P(x)=a_0+a_1x+...+a_nx^n\in\mathbb{C}[x]$
Source: 4-th Taiwanese Mathematical Olympiad 1995
1/16/2007
Let
P
(
x
)
=
a
0
+
a
1
x
+
.
.
.
+
a
n
x
n
∈
C
[
x
]
P(x)=a_{0}+a_{1}x+...+a_{n}x^{n}\in\mathbb{C}[x]
P
(
x
)
=
a
0
+
a
1
x
+
...
+
a
n
x
n
∈
C
[
x
]
, where
a
n
=
1
a_{n}=1
a
n
=
1
. The roots of
P
(
x
)
P(x)
P
(
x
)
are
b
1
,
b
2
,
.
.
.
,
b
n
b_{1},b_{2},...,b_{n}
b
1
,
b
2
,
...
,
b
n
, where
∣
b
1
∣
,
∣
b
2
∣
,
.
.
.
,
∣
b
j
∣
>
1
|b_{1}|,|b_{2}|,...,|b_{j}|>1
∣
b
1
∣
,
∣
b
2
∣
,
...
,
∣
b
j
∣
>
1
and
∣
b
j
+
1
∣
,
.
.
.
,
∣
b
n
∣
≤
1
|b_{j+1}|,...,|b_{n}|\leq 1
∣
b
j
+
1
∣
,
...
,
∣
b
n
∣
≤
1
. Prove that
∏
i
=
1
j
∣
b
i
∣
≤
∣
a
0
∣
2
+
∣
a
1
∣
2
+
.
.
.
+
∣
a
n
∣
2
\prod_{i=1}^{j}|b_{i}|\leq\sqrt{|a_{0}|^{2}+|a_{1}|^{2}+...+|a_{n}|^{2}}
∏
i
=
1
j
∣
b
i
∣
≤
∣
a
0
∣
2
+
∣
a
1
∣
2
+
...
+
∣
a
n
∣
2
.
inequalities
algebra
polynomial
algebra proposed