MathDB
$P(x)=a_0+a_1x+...+a_nx^n\in\mathbb{C}[x]$

Source: 4-th Taiwanese Mathematical Olympiad 1995

January 16, 2007
inequalitiesalgebrapolynomialalgebra proposed

Problem Statement

Let P(x)=a0+a1x+...+anxnC[x]P(x)=a_{0}+a_{1}x+...+a_{n}x^{n}\in\mathbb{C}[x] , where an=1a_{n}=1. The roots of P(x)P(x) are b1,b2,...,bnb_{1},b_{2},...,b_{n}, where b1,b2,...,bj>1|b_{1}|,|b_{2}|,...,|b_{j}|>1 and bj+1,...,bn1|b_{j+1}|,...,|b_{n}|\leq 1. Prove that i=1jbia02+a12+...+an2\prod_{i=1}^{j}|b_{i}|\leq\sqrt{|a_{0}|^{2}+|a_{1}|^{2}+...+|a_{n}|^{2}}.