MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
Taiwan National Olympiad
1999 Taiwan National Olympiad
2
2
Part of
1999 Taiwan National Olympiad
Problems
(1)
$a_i+a_j\leq a_{i+j}\leq a_i+a_j+1$
Source: 8-th Taiwanese Mathematical Olympiad 1999
1/20/2007
Let
a
1
,
a
2
,
.
.
.
,
a
1999
a_{1},a_{2},...,a_{1999}
a
1
,
a
2
,
...
,
a
1999
be a sequence of nonnegative integers such that for any
i
,
j
i,j
i
,
j
with
i
+
j
≤
1999
i+j\leq 1999
i
+
j
≤
1999
,
a
i
+
a
j
≤
a
i
+
j
≤
a
i
+
a
j
+
1
a_{i}+a_{j}\leq a_{i+j}\leq a_{i}+a_{j}+1
a
i
+
a
j
≤
a
i
+
j
≤
a
i
+
a
j
+
1
. Prove that there exists a real number
x
x
x
such that
a
n
=
[
n
x
]
∀
n
a_{n}=[nx]\forall n
a
n
=
[
n
x
]
∀
n
.
number theory proposed
number theory