MathDB
$a_i+a_j\leq a_{i+j}\leq a_i+a_j+1$

Source: 8-th Taiwanese Mathematical Olympiad 1999

January 20, 2007
number theory proposednumber theory

Problem Statement

Let a1,a2,...,a1999a_{1},a_{2},...,a_{1999} be a sequence of nonnegative integers such that for any i,ji,j with i+j1999i+j\leq 1999 , ai+ajai+jai+aj+1a_{i}+a_{j}\leq a_{i+j}\leq a_{i}+a_{j}+1. Prove that there exists a real number xx such that an=[nx]na_{n}=[nx]\forall n.