MathDB
Problems
Contests
National and Regional Contests
The Philippines Contests
Philippine MO
2017 Philippine MO
1
1
Part of
2017 Philippine MO
Problems
(1)
Inequality involving integer functions
Source: Philippine Mathematical Olympiad, 2017
12/31/2017
Given
n
∈
N
n \in \mathbb{N}
n
∈
N
, let
σ
(
n
)
\sigma (n)
σ
(
n
)
denote the sum of the divisors of
n
n
n
and
ϕ
(
n
)
\phi (n)
ϕ
(
n
)
denote the number of integers
n
≥
m
n \geq m
n
≥
m
for which
gcd
(
m
,
n
)
=
1
\gcd(m,n) = 1
g
cd
(
m
,
n
)
=
1
. Show that for all
n
∈
N
n \in \mathbb{N}
n
∈
N
,
1
σ
(
n
)
+
1
ϕ
(
n
)
≥
2
n
\large \frac{1}{\sigma (n)} + \frac{1}{\phi (n)} \geq \frac{2}{n}
σ
(
n
)
1
+
ϕ
(
n
)
1
≥
n
2
and determine when equality holds.
inequalities
number theory
function