MathDB
Inequality involving integer functions

Source: Philippine Mathematical Olympiad, 2017

December 31, 2017
inequalitiesnumber theoryfunction

Problem Statement

Given nNn \in \mathbb{N}, let σ(n)\sigma (n) denote the sum of the divisors of nn and ϕ(n)\phi (n) denote the number of integers nmn \geq m for which gcd(m,n)=1\gcd(m,n) = 1. Show that for all nNn \in \mathbb{N},
1σ(n)+1ϕ(n)2n\large \frac{1}{\sigma (n)} + \frac{1}{\phi (n)} \geq \frac{2}{n}
and determine when equality holds.