MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
Akdeniz University MO
1998 Akdeniz University MO
3
3
Part of
1998 Akdeniz University MO
Problems
(2)
Inequality (easy)
Source: A book
1/30/2016
Let
x
,
y
,
z
x,y,z
x
,
y
,
z
be non-negative numbers such that
x
+
y
+
z
≤
3
x+y+z \leq 3
x
+
y
+
z
≤
3
. Prove that
2
1
+
x
+
2
1
+
y
+
2
1
+
z
≥
3
\frac{2}{1+x}+\frac{2}{1+y}+\frac{2}{1+z} \geq 3
1
+
x
2
+
1
+
y
2
+
1
+
z
2
≥
3
inequalities
easy inequality
inequality
Source:
1/31/2016
Let
x
,
y
,
z
x,y,z
x
,
y
,
z
be real numbers such that,
x
≥
y
≥
z
>
0
x \geq y \geq z >0
x
≥
y
≥
z
>
0
. Prove that
x
2
−
y
2
z
+
z
2
−
y
2
x
+
x
2
−
z
2
y
≥
3
x
−
4
y
+
z
\frac{x^2-y^2}{z}+\frac{z^2-y^2}{x}+\frac{x^2-z^2}{y} \geq 3x-4y+z
z
x
2
−
y
2
+
x
z
2
−
y
2
+
y
x
2
−
z
2
≥
3
x
−
4
y
+
z
inequalities
easy inequality
easy