MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
Akdeniz University MO
1998 Akdeniz University MO
3
inequality
inequality
Source:
January 31, 2016
inequalities
easy inequality
easy
Problem Statement
Let
x
,
y
,
z
x,y,z
x
,
y
,
z
be real numbers such that,
x
≥
y
≥
z
>
0
x \geq y \geq z >0
x
≥
y
≥
z
>
0
. Prove that
x
2
−
y
2
z
+
z
2
−
y
2
x
+
x
2
−
z
2
y
≥
3
x
−
4
y
+
z
\frac{x^2-y^2}{z}+\frac{z^2-y^2}{x}+\frac{x^2-z^2}{y} \geq 3x-4y+z
z
x
2
−
y
2
+
x
z
2
−
y
2
+
y
x
2
−
z
2
≥
3
x
−
4
y
+
z
Back to Problems
View on AoPS