Let ABC be a triangle with ∣AB∣=18, ∣AC∣=24, and m(BAC)=150∘. Let D, E, F be points on sides [AB], [AC], [BC], respectively, such that ∣BD∣=6, ∣CE∣=8, and ∣CF∣=2∣BF∣. Let H1, H2, H3 be the reflections of the orthocenter of triangle ABC over the points D, E, F, respectively. What is the area of triangle H1H2H3?<spanclass=′latex−bold′>(A)</span> 70<spanclass=′latex−bold′>(B)</span> 72<spanclass=′latex−bold′>(C)</span> 84<spanclass=′latex−bold′>(D)</span> 96<spanclass=′latex−bold′>(E)</span> 108 geometrygeometric transformationreflectionhomothetytrigonometry