MathDB
P09 [Geometry] - Turkish NMO 1st Round - 2013

Source:

April 16, 2013
geometrygeometric transformationreflectionhomothetytrigonometry

Problem Statement

Let ABCABC be a triangle with AB=18|AB|=18, AC=24|AC|=24, and m(BAC^)=150m(\widehat{BAC}) = 150^\circ. Let DD, EE, FF be points on sides [AB][AB], [AC][AC], [BC][BC], respectively, such that BD=6|BD|=6, CE=8|CE|=8, and CF=2BF|CF|=2|BF|. Let H1H_1, H2H_2, H3H_3 be the reflections of the orthocenter of triangle ABCABC over the points DD, EE, FF, respectively. What is the area of triangle H1H2H3H_1H_2H_3?
<spanclass=latexbold>(A)</span> 70<spanclass=latexbold>(B)</span> 72<spanclass=latexbold>(C)</span> 84<spanclass=latexbold>(D)</span> 96<spanclass=latexbold>(E)</span> 108 <span class='latex-bold'>(A)</span>\ 70 \qquad<span class='latex-bold'>(B)</span>\ 72 \qquad<span class='latex-bold'>(C)</span>\ 84 \qquad<span class='latex-bold'>(D)</span>\ 96 \qquad<span class='latex-bold'>(E)</span>\ 108