MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
Turkey MO (2nd round)
1993 Turkey MO (2nd round)
1993 Turkey MO (2nd round)
Part of
Turkey MO (2nd round)
Subcontests
(6)
6
1
Hide problems
turkey 1993 q6
n
1
,
…
,
n
k
,
a
n_{1},\ldots ,n_{k}, a
n
1
,
…
,
n
k
,
a
are integers that satisfies the above conditions A)For every
i
≠
j
i\neq j
i
=
j
,
(
n
i
,
n
j
)
=
1
(n_{i}, n_{j})=1
(
n
i
,
n
j
)
=
1
B)For every
i
,
a
n
i
≡
1
(
m
o
d
n
i
)
i, a^{n_{i}}\equiv 1 (mod n_{i})
i
,
a
n
i
≡
1
(
m
o
d
n
i
)
C)For every
i
,
X
a
−
1
≡
0
(
m
o
d
n
i
)
i, X^{a-1}\equiv 0(mod n_{i})
i
,
X
a
−
1
≡
0
(
m
o
d
n
i
)
. Prove that
a
x
≡
1
(
m
o
d
x
)
a^{x}\equiv 1(mod x)
a
x
≡
1
(
m
o
d
x
)
congruence has at least
2
k
+
1
−
2
2^{k+1}-2
2
k
+
1
−
2
solutions. (
x
>
1
x>1
x
>
1
)
5
1
Hide problems
turkey 1993 q5
Prove that we can draw a line (by a ruler and a compass) from a vertice of a convex quadrilateral such that, the line divides the quadrilateral to two equal areas.
4
1
Hide problems
turkey 1993 q4
a
n
a_{n}
a
n
is a sequence of positive integers such that, for every
n
≥
1
n\geq 1
n
≥
1
,
0
<
a
n
+
1
−
a
n
<
a
n
0<a_{n+1}-a_{n}<\sqrt{a_{n}}
0
<
a
n
+
1
−
a
n
<
a
n
. Prove that for every
x
,
y
∈
R
x,y\in{R}
x
,
y
∈
R
such that
0
<
x
<
y
<
1
0<x<y<1
0
<
x
<
y
<
1
x
<
a
k
a
m
<
y
x< \frac{a_{k}}{a_{m}}<y
x
<
a
m
a
k
<
y
we can find such
k
,
m
∈
Z
+
k,m\in{Z^{+}}
k
,
m
∈
Z
+
.
3
1
Hide problems
turkey 1993 q3
n
∈
Z
+
n\in{Z^{+}}
n
∈
Z
+
and
A
=
1
,
…
,
n
A={1,\ldots ,n}
A
=
1
,
…
,
n
.
f
:
N
→
N
f: N\rightarrow N
f
:
N
→
N
and
σ
:
N
→
N
\sigma: N\rightarrow N
σ
:
N
→
N
are two permutations, if there is one
k
∈
A
k\in A
k
∈
A
such that
(
f
∘
σ
)
(
1
)
,
…
,
(
f
∘
σ
)
(
k
)
(f\circ\sigma)(1),\ldots ,(f\circ\sigma)(k)
(
f
∘
σ
)
(
1
)
,
…
,
(
f
∘
σ
)
(
k
)
is increasing and
(
f
∘
σ
)
(
k
)
,
…
,
(
f
∘
σ
)
(
n
)
(f\circ\sigma)(k),\ldots ,(f\circ\sigma)(n)
(
f
∘
σ
)
(
k
)
,
…
,
(
f
∘
σ
)
(
n
)
is decreasing sequences we say that
f
f
f
is good for
σ
\sigma
σ
.
S
σ
S_\sigma
S
σ
shows the set of good functions for
σ
\sigma
σ
. a) Prove that,
S
σ
S_\sigma
S
σ
has got
2
n
−
1
2^{n-1}
2
n
−
1
elements for every
σ
\sigma
σ
permutation. b)
n
≥
4
n\geq 4
n
≥
4
, prove that there are permutations
σ
\sigma
σ
and
τ
\tau
τ
such that,
S
σ
∩
S
τ
=
ϕ
S_{\sigma}\cap S_{\tau}=\phi
S
σ
∩
S
τ
=
ϕ
.
2
1
Hide problems
turkey 1993 q2
I centered incircle of triangle
A
B
C
ABC
A
BC
(
m
(
B
^
)
=
9
0
∘
)
(m(\hat{B})=90^\circ)
(
m
(
B
^
)
=
9
0
∘
)
touches
[
A
B
]
,
[
B
C
]
,
[
A
C
]
\left[AB\right], \left[BC\right], \left[AC\right]
[
A
B
]
,
[
BC
]
,
[
A
C
]
respectively at
F
,
D
,
E
F, D, E
F
,
D
,
E
.
[
C
I
]
∩
[
E
F
]
=
L
\left[CI\right]\cap\left[EF\right]={L}
[
C
I
]
∩
[
EF
]
=
L
and
[
D
L
]
∩
[
A
B
]
=
N
\left[DL\right]\cap\left[AB\right]=N
[
D
L
]
∩
[
A
B
]
=
N
. Prove that
[
A
I
]
=
[
N
D
]
\left[AI\right]=\left[ND\right]
[
A
I
]
=
[
N
D
]
.
1
1
Hide problems
turkey 1993 q1
Prove that there is a number such that its decimal represantation ends with 1994 and it can be written as
1994
⋅
199
3
n
1994\cdot 1993^{n}
1994
⋅
199
3
n
(
n
∈
Z
+
n\in{Z^{+}}
n
∈
Z
+
)