MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
Turkey MO (2nd round)
1993 Turkey MO (2nd round)
6
turkey 1993 q6
turkey 1993 q6
Source:
October 27, 2006
number theory unsolved
number theory
Problem Statement
n
1
,
…
,
n
k
,
a
n_{1},\ldots ,n_{k}, a
n
1
,
…
,
n
k
,
a
are integers that satisfies the above conditions A)For every
i
≠
j
i\neq j
i
=
j
,
(
n
i
,
n
j
)
=
1
(n_{i}, n_{j})=1
(
n
i
,
n
j
)
=
1
B)For every
i
,
a
n
i
≡
1
(
m
o
d
n
i
)
i, a^{n_{i}}\equiv 1 (mod n_{i})
i
,
a
n
i
≡
1
(
m
o
d
n
i
)
C)For every
i
,
X
a
−
1
≡
0
(
m
o
d
n
i
)
i, X^{a-1}\equiv 0(mod n_{i})
i
,
X
a
−
1
≡
0
(
m
o
d
n
i
)
. Prove that
a
x
≡
1
(
m
o
d
x
)
a^{x}\equiv 1(mod x)
a
x
≡
1
(
m
o
d
x
)
congruence has at least
2
k
+
1
−
2
2^{k+1}-2
2
k
+
1
−
2
solutions. (
x
>
1
x>1
x
>
1
)
Back to Problems
View on AoPS