Let ABCD be a convex quadrilateral such that E,F∈[AB],G,H∈[BC],K,L∈[CD],M,N∈[DA],AE=EF=FBBG=GH=HCCK=KL=LDDM=MN=NA Let [NG]∩[LE]={P},[NG]∩[KF]={Q}, [MH]∩[KF]={R},[MH]∩[LE]={S}
Prove that [*]Area(ABCD)=9⋅Area(PQRS) [*] NP=PQ=QG geometryanalytic geometrylinear algebramatrixrotationgeometry proposed