MathDB
That area problem

Source: Turkey TST 1990 - P4

September 11, 2013
geometryanalytic geometrylinear algebramatrixrotationgeometry proposed

Problem Statement

Let ABCDABCD be a convex quadrilateral such that E,F[AB],AE=EF=FBG,H[BC],BG=GH=HCK,L[CD],CK=KL=LDM,N[DA],DM=MN=NA\begin{array}{rl} E,F \in [AB],& AE = EF = FB \\ G,H \in [BC],& BG = GH = HC \\ K,L \in [CD],& CK = KL = LD \\ M,N \in [DA],& DM = MN = NA \end{array} Let [NG][LE]={P},[NG][KF]={Q},[NG] \cap [LE] = \{P\}, [NG]\cap [KF] = \{Q\}, [MH][KF]={R},[MH][LE]={S}{[}MH] \cap [KF] = \{R\}, [MH]\cap [LE]=\{S\} Prove that [*]Area(ABCD)=9Area(PQRS)Area(ABCD) = 9 \cdot Area(PQRS) [*] NP=PQ=QGNP=PQ=QG