MathDB
Problems
Contests
National and Regional Contests
Vietnam Contests
Vietnam National Olympiad
2024 Vietnam National Olympiad
1
1
Part of
2024 Vietnam National Olympiad
Problems
(1)
Sequences, polynomials and limits...
Source: 2024 Vietnam National Olympiad - Problem 1
1/5/2024
For each real number
x
x
x
, let
⌊
x
⌋
\lfloor x \rfloor
⌊
x
⌋
denote the largest integer not exceeding
x
x
x
. A sequence
{
a
n
}
n
=
1
∞
\{a_n \}_{n=1}^{\infty}
{
a
n
}
n
=
1
∞
is defined by
a
n
=
1
4
⌊
−
log
4
n
⌋
,
∀
n
≥
1.
a_n = \frac{1}{4^{\lfloor -\log_4 n \rfloor}}, \forall n \geq 1.
a
n
=
4
⌊
−
l
o
g
4
n
⌋
1
,
∀
n
≥
1.
Let
b
n
=
1
n
2
(
∑
k
=
1
n
a
k
−
1
a
1
+
a
2
)
,
∀
n
≥
1.
b_n = \frac{1}{n^2} \left( \sum_{k=1}^n a_k - \frac{1}{a_1+a_2} \right), \forall n \geq 1.
b
n
=
n
2
1
(
∑
k
=
1
n
a
k
−
a
1
+
a
2
1
)
,
∀
n
≥
1.
a) Find a polynomial
P
(
x
)
P(x)
P
(
x
)
with real coefficients such that
b
n
=
P
(
a
n
n
)
,
∀
n
≥
1
b_n = P \left( \frac{a_n}{n} \right), \forall n \geq 1
b
n
=
P
(
n
a
n
)
,
∀
n
≥
1
. b) Prove that there exists a strictly increasing sequence
{
n
k
}
k
=
1
∞
\{n_k \}_{k=1}^{\infty}
{
n
k
}
k
=
1
∞
of positive integers such that
lim
k
→
∞
b
n
k
=
2024
2025
.
\lim_{k \to \infty} b_{n_k} = \frac{2024}{2025}.
k
→
∞
lim
b
n
k
=
2025
2024
.
algebra
polynomial