MathDB
Sequences, polynomials and limits...

Source: 2024 Vietnam National Olympiad - Problem 1

January 5, 2024
algebrapolynomial

Problem Statement

For each real number xx, let x\lfloor x \rfloor denote the largest integer not exceeding xx. A sequence {an}n=1\{a_n \}_{n=1}^{\infty} is defined by an=14log4n,n1.a_n = \frac{1}{4^{\lfloor -\log_4 n \rfloor}}, \forall n \geq 1. Let bn=1n2(k=1nak1a1+a2),n1.b_n = \frac{1}{n^2} \left( \sum_{k=1}^n a_k - \frac{1}{a_1+a_2} \right), \forall n \geq 1.
a) Find a polynomial P(x)P(x) with real coefficients such that bn=P(ann),n1b_n = P \left( \frac{a_n}{n} \right), \forall n \geq 1. b) Prove that there exists a strictly increasing sequence {nk}k=1\{n_k \}_{k=1}^{\infty} of positive integers such that limkbnk=20242025.\lim_{k \to \infty} b_{n_k} = \frac{2024}{2025}.