MathDB

5

Part of 1997 IMC

Problems(2)

p-norms on integer lattice

Source: IMC 1997 day 1 problem 5

10/1/2005
For postive integer nn consider the hyperplane R0n=x=(x1x2...xn)Rn:i=1nxi=0 R_0^n = {x=(x_1x_2...x_n)\in\mathbb{R}^n : \sum\limits^n_{i=1}x_i=0} and the lattice Z0n={yR0n: (i:yiN)} Z_0^n = \{y \in R^n_0 : \ (\forall i: y_i \in \mathbb{N})\} Define the quasi-norm in Rn\mathbb{R}^n by xp=i=1nxipp\|x\|_p= \sqrt[p]{\sum\limits^{n}_{i=1}|x_i|^p} if 0<p<0<p<\infty and x=maxixi\|x\|_{\infty} = \max\limits_i |x_i|. (a) If xR0nx\in R^n_0 so that maxximinxi1\max x_i - \min x_i \le 1 then prove that p[1,],yZ0n\forall p \in [1,\infty], \forall y \in Z^n_0 we have xpx+yp\|x\|_p\le\|x+y\|_p (b) Prove that for every p]0,1[p\in ]0,1[, there exist nN,xR0n,yZ0nn \in \mathbb{N}, x\in R^n_0, y\in Z^n_0 with maxximinxi1\max x_i - \min x_i \le 1 and xp>x+yp\|x\|_p>\|x+y\|_p
real analysisreal analysis unsolved
cute from IMC

Source: IMC 1997/problem B5

6/13/2004
Let XX be an arbitrary set and ff a bijection from XX to XX. Show that there exist bijections g, g:XXg,\ g':X\to X s.t. f=gg, gg=gg=1Xf=g\circ g',\ g\circ g=g'\circ g'=1_X.
algebra proposedalgebra